

Robust vibration energy harvesting from nonlinear mechanisms

Jocelyn Kluger, Themis Sapsis, Alexander Slocum

Department of Mechanical Engineering, Massachusetts Institute of Technology, jociek@mit.edu

Case Study: Power a cell phone from a person walking

<u>Challenge</u>

- Ambient vibrations are stochastic, multifrequency, and time-varying
- Traditional linear oscillators can only absorb ambient energy at one frequency
- Example scenarios:
 - Ambient vibration energy harvesting
 - Cell phones carried by people
 - Ocean wave utility-scale generators
 - Small electronics in remote locations
 - MEMs sensors implanted in the body
 - Shock absorption
 - Protect offshore platforms from water wave impacts
 - Protect buildings from earthquakes

Solution

- Nonlinear oscillators are more robust to vibration signal changes than linear systems
 - Passive solution (versus using controls)

Hip motion Power for varied parameters Walking Running 1DOF Linear Magnet with mass, m coils K/2 1DOF Nonlinear Experimentally recorded hip motions. — Walk. — Walk quickly. — Run. — Bike. 2DOF Linear Comparison of 2DOF Nonlinear and 2DOF Linear Dynamics • Both systems: $\lambda_{Mid} = 1.6 \text{ Ns/m}$ • $Power = \lambda_{Mid}(\dot{X} - \dot{Z})^2 \sim \lambda_{Mid} (a\omega)^2$ 2DOF X: 0.0003609 Y: 0.00172 Z: 0.002388 Nonlinear Middle Spring Contact 0.0007 0.0012 Top nonlinear cantilever height (m) 0.0007 0.0012 Top nonlinear cantilever height (m)

Conclusions

 Nonlinearity makes the system more robust to environmental vibration spectrum changes

System performance comparison

 Nonlinear systems are also more robust to parasitic damping

Robustness to Parasitic Damping

How to implement nonlinear springs?

 A design with essential nonlinearity, low-friction, and one moving part (which increases device lifetime)

Future Work

- Build and test full prototypes with electromagnetic system
- Modify contact-surface stiffening-spring effect to be more volume-compact
- Analytically study stochastic nonlinear dynamics to predict maximum power and robustness
- Apply concepts to utility-scale ocean-wave electricity generation

