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ABSTRACT

An order-reduction method has been developed for efficiently estimat-

ing the steady state response of an offshore wind turbine. The method

uses eigenanalysis for the tower’s two lowest bending modes, statisti-

cal linearization for the nonlinear ocean wave viscous forcing and wind-

induced damping, and environmental statistics for the lifetime fatigue

stress. The estimated responses agree well with time-domain simulations

while computing the results 100 times more efficiently. To demonstrate

the method’s usefulness, we use it to estimate the auxiliary power output

and effects on fatigue stress of differently sized damping elements in a

floating wind turbine spar platform, which represent ideal wave energy

converters.

KEY WORDS: Floating wind turbine; Statistical linearization; eigen-

analysis; fatigue.

INTRODUCTION

Many concepts have been considered for improving offshore wind

turbine performance: different platform designs, tower and rotor types,

controls, and hybrid systems with wave energy converters (Matha, 2009;

Muliawan et al., 2013; Roddier et al., 2010; Slocum, 2014). Dynamics

studies aid in assessing the different concepts. Wind turbines are

complex systems, comprising of coupled aerodynamic, hydrodynamic,

elastic, and control subsystems, which themselves contain stochasticities

and nonlinearities. There are two traditional approaches to modeling

wind turbine dynamics.

The first, simpler approach is a linear frequency-domain analysis

(Newman, 1977; Ramachandran et al., 2013; Jonkman,2010). This

dynamic model considers linear wave forcing due to potential flow, often

computed by a panel method program such as WAMIT (Newman and

Sclavounos, 1988). It ignores nonlinear effects related to wave viscous

wave forcing or wind thrust. This method captures many important

characteristics of most systems and is adequate for most preliminary

design analysis (Wayman et al., 2006). The main advantage of linear

frequency domain analysis is its very fast runtime for computing

system steady-state responses. The limitation is that some dynamic

characteristics are not captured by the model.

The second approach is a nonlinear time-domain simulation of the full

system. This approach considers wave viscous forcing, usually by

employing Morison elements, in addition to linear wave forcing from

panel methods. For the tower and blade bending, FAST employs modal

analysis while HAWC2 uses a finite element formulation where the

structure is divided into Timoshenko beams connected to each other

by constraints (Jonkman and Buhl, 2005; Karimirad, 2013; Larsen

and Hansen, 2005). In the time domain, turbine speed and blade pitch

controllers are easily simulated. The main advantages of time domain

simulations are the ability to compute transient effects and responses to

extreme loads that occur during storms when nonlinear viscous effects

are significant (Jonkman, 2010). Even as advances are being made to

accelerate the time-domain simulations by substructuring and parallel

processing, the intrinsic challenge of time-domain simulations is high

computation cost (Schafhirt et al., 2015).

The two methods are appropriate for different stages of design. The linear

approach will always be the fastest for basic design analysis, while only

time domain simulations are rigorous enough to verify if a wind turbine

meets design standards (Quarton, 2005). This paper is about a middle

approach in between the completely linear frequency-domain model and

nonlinear time-domain model. Our goal is to efficiently perform design

analyses that account for system nonlinearities. First, we describe a float-

ing wind turbine model that can be solved in the frequency domain. The

approach uses a Galerkin projection to model tower bending, statistical

linearization to model nonlinear viscous wave forcing and steady wind

damping, and environmental statistics to calculate tower fatigue stress.

We find good agreement between our results and FAST. Then, we apply

the approach to optimizing an ideal wave energy converter in the spar

of a floating wind turbine. Throughout this paper, we use the National

Renewable Energy Laboratory (NREL) 5-MW wind turbine mounted on

the OC3 spar as a case study (Jonkman et al., 2009; Jonkman, 2010).
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FREQUENCY-DOMAIN MODEL

We model the dynamics of the floating wind turbine by the linear equa-

tion of motion,

I(ω)~̈x + B(ω)~̇x +K~x = ~f (ω). (1)

For simplicity in this paper, we consider only the coupled degrees of

freedom excited by head-on incident wind and waves,
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where x1, x3, and x5 are the rigid platform surge, heave, and pitch mo-

tions about the mean water level, respectively, as labeled in Fig. 1. α1

and α2 are time-dependent coefficients of the flexible tower’s first and

second fore-aft bending modes. Future studies may easily expand the

model to include additional degrees of freedom for the platform motion,

tower side-side bending modes, and attached wave energy converter ar-

rays. I(ω), B(ω), and K are inertia, damping, and spring stiffness matri-

ces respectively. Throughout this paper, we refer to a coordinate system

with an origin at the still water level, so the matrices contain nondiagonal

terms as per the parallel axis theorem. Matrices not explicitly listed in

this paper are given in Jonkman (2010). We define the inertia matrix as

I(ω) =MPlatform +MTower + AHydro(ω), (3)

where MPlatform and MTower are the mass matrices of the rigid platform

and flexible tower, respectively. MTower contains elements coupling

the tower’s bending modes and rigid heave motion with the platform.

AHydro(ω) is the floating platform’s added mass. The damping matrix is

B(ω) = BHydro(ω) + BTower + BVisc,eq + BWind,eq + BWEC, (4)

where BHydro(ω) is the frequency-dependent platform hydrodynamic

damping, BTower is damping related to the tower bending. BVisc,eq and

BWind,eq are the effective damping coefficients found by statistical lin-

earization of the nonlinear viscous drag of water motion on the platform

and wind on the rotor. BWEC is damping due to an attached wave energy

converter. The spring stiffness matrix is

K = CHydro +KMooring +KTower, (5)

where CHydro contains the platform hydrostatic restoring coefficients,

KMooring is the linear spring stiffness matrix representing the mooring

lines, and KTower contains the tower stiffness coefficients. The complex-

valued wave forcing vector is

~f = ~fHydro+ ~fVisc,Eq = Re
{
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where ~fHydro is the linear hydrodynamic forcing and ~fVisc,Eq is the sta-

tistically linearized viscous forcing of the waves on the platform. The

frequency-dependent values of AHydro(ω), BHydro(ω), and ~fHydro(ω) may

be obtained from a panel radiation/diffraction program such as WAMIT

(Lee and Newman, 2013). The response amplitude operator of the sys-

tem for waves with amplitude a and frequency ω is

~H(ω) =
~X

a
= (−ω2I + jωB +K)−1

~F

a
. (7)

Fig. 1 Catenary moored spar floating wind turbine with head-on

wind and incident waves. In our case study, we add a

damping element representing an ideal wave energy con-

verter to the platform.

Table 1 Floating wind turbine properties

Parameter Value

Tower length, LTower 77.6 m

Distance from the SWL to the tower base, LSWL,Base 10 m

Distance from the SWL to the tower top, LSWL,Top 87.6 m

Tower base diameter 6.5 m

Tower base thickness 2.7 cm

Tower top diameter 3.87 m

Tower top thickness 1.9 cm

Tower top point mass, mTop 3.50 × 105 Kg

Tower elastic modulus, E 210 GPa

Tower density, ρS teel 8500 Kg/m3

Tower ultimate strength, S Ult 2260 MPa

Tower Wohler parameter, m 5

Rotor moment of inertia about SWL 4.32 × 108 Kgm2

Rotor diameter 126 m

Rotor swept area, S 1.25 × 104 m

Case study only: WEC submergence, zWEC 70 m

Using the Wiener-Khinchine theorem, the power spectral density of the

steady-state system is

S +~x (ω) = | ~H(ω)|2S +u (ω), (8)

and the standard deviation in the response is

σ~x(ω) =

√

∫ ∞

0

S +
~x
(ω)dω, (9)
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where S +u (ω) is the ocean wave elevation single-sided spectral density

(Roberts and Spanos, 1999).

Reduced order modeling of the tower bending dynamics

The differential equation for the transverse tower deflection relative to

the floating platform, u(zT , t), is

EI(zT )
∂4u

∂z4
T

+ ρA(zT )

(

∂2u

∂t2
+
∂2y(zT , t)

∂t2

)

= 0. (10)

For the NREL offshore 5-MW baseline wind turbine, the tower’s sec-

ond moment of area, I(zT ), and cross sectional area, A(zT ), depend

on the tower coordinate, zT , as described in Jonkman et al. (2009,

2010). Lateral tower acceleration caused by the platform acceleration,

∂2y(zT , t)/∂t
2, depends on the tower coordinate zT , because of the contri-

bution of platform pitch,

∂2y(zT , t)

∂t2
=

d2 x1

dt2
+

(

LS WL,Base + zT

) d2 x5

dt2
, (11)

where LSWL,Base = 10 m is the distance from the still water level to the

tower base for the OC3-Hywind system.

We use the Galerkin method to convert the continuous differential equa-

tion describing the tower fore-aft bending dynamics, Eq. 10, to several

discrete differential equations based on the tower’s natural frequencies

and corresponding eigenshapes. That is, we approximate a solution to

the tower bending with the form,

u(t, zT ) ≈ α1(t)u1(zT ) + α2(t)u2(zT ) + ... (12)

Here, we consider the tower bending shapes, u1(zT ) and u2(zT ),

corresponding to its two lowest natural frequencies. The higher bending

modes, with frequencies exceeding 10 Hz, have negligible impact on the

structure dynamics when the structure is excited by sea waves, which

have frequencies less than 5 Hz.

We use ANSYS c© finite element software modal analysis to numerically

determine the tower’s natural frequencies and corresponding bending

shapes. In ANSYS, we model the tower as a cantilevered, hollow

tapered cylinder with the parameters listed in Table 1. These parameters

match the OC3-Hywind system (Jonkman, 2010). In ANSYS, we model

the hub, nacelle, and rotor masses as a single point mass on the tower top.

ANSYS modal analysis calculates the relative lateral deformations of

finite element nodes along the tower. Fig. 2 shows these eigenshapes.

We use Matlab c© Curve Fitting Toolbox to best-fit the nodal deformations

to the curve,

ui(zT ) = a2z2
T + a3z3

T + a4z4
T + a5z5

T + a6z6
T . (13)

Eq. 13 represents the eigenshape’s neutral axis deformation. This

eigenshape satisfies the tower’s kinematic boundary conditions at the

base of zero deformation (u(0) = 0) and slope (∂u(0)/∂zT ) = 0). Table

2 lists the coefficients for the tower’s two lowest frequency bending

modes. We made slight adjustments to the coefficients so that the tower’s

natural frequencies match those in Matha (2009). The coefficients listed

in Table 2 are meaningful only for relative displacements along the

tower, as we will scale and dimensionalize them with the time-dependent

coefficients α1(t) and α2(t), respectively in Eq. 12. Future studies may

use a more accurate method for determining the eigenshapes. However,

we found that the above method produced accurate enough results for

our analysis.

(a) (b)

Fig. 2 Eigenshapes and von-Mises stress trends for the tower’s

two lowest fore-aft bending modes. (a) Mode 1, u1(z), 0.47

Hz. (b) Mode 2, u2(z), 3.75 Hz. For illustration purposes in

this figure, the maximum curvature and von-Mises stress is

approximately 10 times larger in Mode 2 than in Mode 1.

Table 2 Coefficients for neutral axis line-of-best-fit for the tower

bending modes, u1(z) and u2(z).

Coefficient Mode 1, u1(z), 0.47 Hz Mode 2, u2(z), 3.75 Hz

a2 2.95 ×10−7 3.85 ×10−6

a3 -7.48 ×10−10 -6.43 ×10−8

a4 2.71 ×10−11 7.23 ×10−10

a5 -4.63 ×10−13 -1.36 ×10−11

a6 9.89 ×10−16 8.79 ×10−14

Having determined the tower bending shapes, u1(zT ) and u2(zT ), we sub-

stitute the assumed solution, Eq.s 12 and 13, into the governing equation,

Eq. 10,

EI
(

α1uiv
1 + α2uiv

2

)

+ ρA (α̈1u1 + α̈2u2 + ÿ) = 0, (14)

where the roman numerals indicate derivatives with respect to space and

dots with respect to time. To find the governing equation of the first

bending mode, we multiply Eq. 14 by u1 and integrate along zT ,

∫ l

0

EI
(

α1uiv
1 u1 + α2uiv

2 u1

)

dzT +

∫ l

0

ρA (α̈1u1u1 + α̈2u2u1 + ÿu1) dzT = 0.

(15)

Using the self-adjoint and orthogonality properties of the eigenshapes,

and substituting in Eq. 11 for ÿ, Eq. 15 reduces to

α1

(∫ l

0

EI(uii
1 )2 dzT

)

+ α̈1

(∫ l

0

ρAu2
1dzT

)

+ ẍ1

(∫ l

0

ρA(u1dzT

)

+ ẍ5

(∫ l

0

ρA(lS WL,Base + zT )u1dzT

)

= 0. (16)

We define new coefficients to express Eq. 16 as,

k1α1 + m1α̈1 + m1,p1 ẍ1 + m1,p5 ẍ5 = 0. (17)
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Repeating the procedure from Eq. 14 for u2 produces the second tower

bending mode governing equation,

k2α2 + m2α̈2 + m2,p1 ẍ2 + m2,p5 ẍ5 = 0. (18)

Table 3 lists the calculated coefficients. It is important to note that mi,

mi,p1, and m1,p5 account for the tower end mass.

Table 3 Bending mode coefficients and natural frequencies derived

by Galerkin projection.

Coefficient Mode 1, f1 = 0.47 Hz Mode 2, f2 = 3.75 Hz

mi 2.778 × 100 8.476 × 10−1

ki 2.461 × 101 4.715 × 102

mi,p1 1.131 × 103 4.190 × 102

mi,p5 9.432 × 104 2.364 × 104

Next, we determine the tower’s influence on the platform dynamics by

using the Euler-Lagrange approach. For the tower-platform system with

four coupled degrees of freedom; platform surge x1, platform pitch x5,

and two tower bending modes contained in u, given in Eq. 12; the poten-

tial energy is due to the tower bending,

V =
E

2

∫ l

0

I(uii)2dz. (19)

The kinetic energy is

T =
1

2
mp1 ẋ2

1 +
1

2
mp5 ẋ2

5 + mp15 ẋ1 ẋ5+

1

2

∫ l

0

ρA
(

ẋ1 +
(

LSWL,Base + z
)

ẋ5 + u̇
)2

dz+

1

2
mTop(ẋ1 + (LSWL,Base + LTower + u̇)2 +

1

2
ITop ẋ2

5, (20)

where mp1, mp5, and mp15 are the platform surge mass, pitch inertia, and

product of inertia, respectively, mTop is the combined hub, rotor, nacelle

mass at the tower top, and ITop is the rotor inertia about the SWL. Defin-

ing the Lagrangian as

L = T − V, (21)

and substituting Eq.s 19-21 into the equation,

d

dt

(

∂L
∂q̇

)

− ∂L
∂q
= 0, (22)

for q = x1 and q = x5 reveals coupling terms between the platform and

tower. The final tower mass and stiffness matrices are
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Statistical linearization of wave viscous forcing

Viscous forces play a significant role in rough sea states (Jonkman,

2010). Using Morison’s equation to approximate viscous forcing on the

spar platform, the surge force and pitch moment are
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where we use the viscous drag coefficient, CD = 0.6 (Jonkman, 2010).

We define the total horizontal velocity of the water relative to the plat-

form as

q̇ = Vwater − Vplatform

=
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where h is the water depth and q̇ is a function of the depth below the

water, z. Future work will increase the accuracy of Vwater by accounting

for radiation and diffraction effects. We sum n ocean wave and platform

response harmonics. For each harmonic, φ j is a random variable with

a uniform distribution for 0 ≤ φ j ≤ 2π. The Central Limit Theorem

guarantees that q̇ will be a Gaussian stochastic process for large n. As

described in Roberts and Spanos (1999), we may determine statistically

equivalent linear damping coefficients in the surge and pitch modes of

the form
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where E{} is the expectation of the Gaussian process. Substituting Eq.s

25 and 26 into Eq. 27, we obtain,
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The Gaussian process q̇ has a probability density of the form,

fQ̇(q̇) =
1

√
2πσq̇

e
− (q̇−q̇)2

2σ2
q̇ , (29)

where σq̇ is the random variable’s standard deviation and its mean q̇ = 0.

Then, the expected value of |q̇| is

E {|q̇|} =
∫ ∞

−∞
|q̇| fQ̇(q̇) dq̇ =

√
2σq̇√
π
. (30)
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The statistically equivalent viscous wave forcing is
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(Roberts and Spanos, 1999). In our frequency-domain method of calcu-

lating the floating wind turbine response, we iteratively solve for BVisc,eq

and ~FVisc,eq until the system response, σ~X converges to within 0.1%,

which typically requires less than 4 iterations for the OC3 spar.

Statistical linearization of nonlinear steady wind forcing

Similarly to the wave viscous forcing, we statistically linearize the forc-

ing on the platform due to a steady wind flowing past the rotor. The

steady wind forcing is nonlinear because platform motion moves the hub,

which changes the incident wind speed relative to the hub. The nonlinear

forcing on the platform is

~FT =
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where LSWL,Top is the distance from the still water level to the tower top,

S = πD2
Rotor/4 is the swept rotor area. We base our rotor thrust coeffi-

cient, CT (VWind), on the steady-state thrust force given in Jonkman et al.

(2009),

CT =
FThrust(VHub)

1
2
ρaS V2

Hub

, (33)

as plotted in Fig. 3. We use air density ρa= 1.225 Kg/m3. We define the

horizontal velocity of the wind relative to the tower top as

q̇W = Vwind − Vtop = VWind − ẋ1 − LSWL,Top ẋ5. (34)

VWind is the constant wind speed in a given wind-sea state. The statis-

tically equivalent linear damping coefficients due to the wind flow have

the form (Roberts and Spanos, 1999)
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Substituting Eq.s 32 and 34 into Eq. 35, we obtain,

BWind,eq =


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(36)

where for steady wind speed VWind, the expected value of |q̇W | is

E {|q̇W |} =
∫ ∞

−∞
|q̇W | fQ̇W
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Fig. 3 Assumed turbine thrust coefficient, CT =
FThrust

0.5ρaS V2 , versus

wind speed, V , derived from Jonkman et al. (2009).

(37)

When the wind’s fluctuating component can be neglected, its statisti-

cally linearized forcing on the oscillating wind turbine is a constant value

(Roberts and Spanos, 1999),

~FWind,eq = E
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~FT
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Fatigue stress based on statistics

Traditional time-domain simulations rainflow-count the alternating

stress cycles over a structure lifetime to determine the equivalent fatigue

stress (EFS) (Robertson and Jonkman, 2009; Matha, 2009). For known

environmental data of an offshore site wave-wind states, we combine

statistics with our frequency-domain dynamic model to calculate the

EFS at the tower base due to wave excitation and steady wind (Naess

and Moan, 2013).

As the tower vibrates in its two lowest frequency bending modes, the

maximum tensile stress at the tower base is

sBase,Max = 0.43α1(t) + 4.2α2(t) MPa, (39)

where we use the results from ANSYS modal analysis. Using results

from ANSYS static analysis, the thrust force on the rotor due to steady

wind causes an additional mean stress on the tower base,

sBase,Thrust = s = 9.03 × 10−2FThrust (VHub) MPa, (40)

where the rotor thrust force, FThrust, in units of kN, is a function of the

hub-height wind speed as given in Jonkman et al. (2009).

For a given sea and wind state, the tower bending is considered a station-

ary, narrow-banded Gaussian process, allowing us to approximate the

fluctuating stress peaks, sP, from Eq. 39, with a Rayleigh probability

density,

fS p
(sp) =

sp

σ2
S p

e

−s2
p

2σ2
S p , sp > 0, (41)
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where σS p is the standard deviation of the stress. We approximate the

stress cycle period as,

Tz = 2π
σS p

σ̇S p

, (42)

where

σ̇S p =

√

∫ ∞

0

ω2S +
S p

(ω)dω. (43)

The wave-induced stress power spectral density is

S +S p(ω) = |0.43Hα1
(ω) + 4.2Hα2

(ω)|2S +u , (44)

where Hα1
(ω) and Hα2

(ω) are the transfer functions of the tower bending

coefficients and S +u is the ocean power spectral density, from Eq.s 7-8 and

40. We approximate the number of cycles of a certain stress amplitude

and mean (sp, s) during each wind/sea state as,

nState,sp ,s ≈ fS p(sp)∆S p

TState

Tz

, (45)

where ∆S p is the stress peak step-width used in our numerical summa-

tion, and the time spent in a given sea state over the device lifetime is

TState = pStateTLife. (46)

We base pState, the fraction of the device’s lifetime, TLife, when the

structure is in a certain wind-sea state, on historical site data.

From Basquin’s equation, the number of cycles to fatigue failure for a

stress mean/peak pair is (Dowling, 2007)

NF =
1

2

(

sUlt − |s|
sp

)m

. (47)

where for the steel material properties, we use ultimate stress, sUlt =

2260 MPa, and Wohler parameter m = 5, which are limits used by Matha

(2009). Using the Palmgren-Miner Rule, the damage incurred over the

device lifetime is

DLife =
∑

States

∑

sp ,s pairs

nS tate,sp ,s

NF

, (48)

where D ≥ 1 indicates likely device failure.

The equivalent fatigue stress (EFS) is the constant peak-peak stress am-

plitude applied over the entire turbine lifetime that causes the same ac-

cumulated damage as caused by the stochastic loads. Rearranging Eq.s

45-48 shows

EFS = 2

(

DLife

2nLife

)1/m

(σUlt − |sLife|) , (49)

where nLife is the total stress cycles over the device’s lifetime,

nLife =
∑

States

TState

Tz

, (50)

and sLife is the weighted mean stress over the device’s lifetime,

sLife =
∑

States

pState sState. (51)
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Fig. 4 Response amplitude operators for the OC3-Hywind system

calculated by the nonlinear frequency domain method and

FAST in (Top) surge, (Middle) heave, and (Bottom) pitch,

for wind speeds V = 0 m/s and V = 18 m/s, with and

without viscous effects (CD = 0 or CD = 0.6). The viscous

effects were calculated for a Bretschneider sea state with

a significant wave height, Hs = 11 m and dominant wave

period, T = 17 s. The FAST results are reproduced from

Ramachandran et al. (2013). All results are for a flexible

tower.

RAO and EFS comparison to FAST for OC3-Hywind

First, we use the nonlinear frequency-domain approach to compute the

response amplitude operators (RAO’s) of the OC3-Hywind 5-MW wind

turbine. We use a Galerkin projection to model the tower bending and a

statistical linearization to model the nonlinear viscous wave forces and

wind thrust. Our steady-state results agree well with FAST and compute

the results approximately 100 times more efficiently (Ramachandran et

al., 2013).

Fig. 4 shows the RAO results in surge, heave, and pitch. As labeled

in Fig. 4, we consider the different modeling cases of no wind or

viscous wave forces (V = 0, CD = 0), moderate wind (V = 18 m/s,

CD = 0), and moderate wind with wave viscous forces (V = 18

m/s and CD = 0.6). Because our model currently uncouples the

heave degree of freedom from the other modes, its RAO does not

change with wind speed. FAST shows only minor differences in the
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heave response for different wind speeds. All of the cases shown

are for a flexible tower. We compare our results with the time-

domain RAO’s from FAST for the cases of no wind (V = 0, CD = 0)

and steady wind (V = 18 m/s, CD = 0) from Ramachandran et al. (2013).

There is good agreement in the responses computed by the nonlinear

frequency domain approach and the FAST time-domain simulation. The

differences in the V = 18 m/s peak frequencies (our 0.036 Hz versus

Ramachandran’s 0.030 Hz) are likely due to our assumed effective

thrust coefficient, shown in Fig. 3, differing from Ramachandran’s.

Other minor differences between the responses, such as our model

showing a pitch RAO>1 at 0 Hz, and the heave RAO missing a drop in

value at 0.008 Hz (the surge resonance frequency) may be due to our

model not considering the platform’s other degrees of freedom, not cou-

pling heave with the other modes, or having minor parameter differences.

Additionally, we plot the platform response for a loading case with

viscous wave forcing (steady wind speed V = 18 m/s, Bretschneider sea

spectrum with a significant wave height Hs = 11 m and dominant wave

period T = 17 s). As expected, for the deep-draft OC3 spar platform,

viscous effects generally decrease the platform response, except for a

slight increase in pitch response at low frequencies ( f < 0.03 Hz).

Finally, we compare the equivalent fatigue stress of our nonlinear fre-

quency domain method to the EFS found by Matha (2009) using time-

domain simulations with stress rainflow counting in FAST (Dowling,

2007). Matha simulated the OC3-Hywind system as experiencing 11

JONSWAP wind-sea states throughout its 20-year lifetime with wind

speeds ranging from 4 to 24 m/s, significant wave heights ranging from

1.6 to 5.9 m, and dominant wave periods ranging from 9.2 to 15.5 sec-

onds (Jonkman, 2007). For this environment, our nonlinear frequency

domain method calculates an EFS of 44.5 MPa, which is within 12% of

the 50.5 MPa value based on time-domain simulations (Matha, 2009).

Some of the difference may be due to slight differences between our and

Matha’s tower and wind-sea state parameters. Although Matha accounts

for wind turbulence and we model only steady wind, Karimirad (2012)

shows that wind turbulence has a negligible effect on tower base bending

stress. Future work will include further investigation of the EFS error.

CASE STUDY: PARAMETER OPTIMIZATION FOR AN

IDEAL DAMPER IN THE OC3-HYWIND SPAR BUOY

To demonstrate an application of the nonlinear frequency domain model,

we consider the simple case of an ideal wave energy converter (WEC)

placed in the OC3 spar buoy, as shown in Fig 1. We model the system as

experiencing 22 wind-sea states throughout its lifetime, listed in Table 4,

based on historical data from a buoy 17 nautical miles WSW of Eureka,

CA (NOAA, 2016). We model the WEC as a damper of spar lateral mo-

tion with a constant coefficient, bWEC. This damper could be physically

realized by a hydrokinetic turbine. We assume that the WEC is located

at a depth zWEC = −70 m that is deep enough so that water motion due to

incident waves is negligible. The model uses the WEC damping matrix,

BWEC =

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. (52)

The WEC power is

PWEC = bWEC(ẋ1 − zWEC ẋ5)2. (53)

Table 4 Sea and wind states used in the WEC case study based on

Eureka, CA NOAA buoy data from 2005-2014. HS is the

significant wave height, TP is the dominant wave period, V

is the mean wind speed, and p is the state occurence prob-

ability. We model the sea conditions by the Bretschneider

spectrum.

State HS (m) TP (s) V (m/s) p

1 0.5 31.4 2 7.1 × 10−3

2 0.5 15.7 2 2.1 × 10−2

3 0.5 10.5 2 1.2 × 10−2

4 0.5 7.85 2 1.3 × 10−2

5 1 31.4 4 4.0 × 10−2

6 1 15.7 4 2.2 × 10−1

7 1 10.5 4 1.7 × 10−1

8 1 7.85 4 9.8 × 10−2

9 2.5 31.4 10 2.9 × 10−2

10 2.5 15.7 10 1.9 × 10−1

11 2.5 10.5 10 9.1 × 10−2

12 2.5 7.85 10 2.7 × 10−2

13 4 31.4 16 8.5 × 10−3

14 4 15.7 16 4.7 × 10−2

15 4 10.5 16 9.5 × 10−3

16 4 7.85 16 1.1 × 10−3

17 5 31.4 20 5.2 × 10−3

18 5 15.7 20 1.2 × 10−2

19 5 10.5 20 1.5 × 10−3

20 5 7.85 20 5.0 × 10−5

21 6 31.4 24 6.6 × 10−5

22 6 15.7 24 5.0 × 10−5

We use the nonlinear frequency domain model, with tower bending and

nonlinear wind and wave forces, to calculate the average annual WEC

power and lifetime equivalent fatigue stress at the tower base, as shown

in Fig. 5. This method and its results allow us to quickly compare the

effect of different WEC damping coefficients on device performance.

We observe that a damping coefficient of 7.3 × 106 Ns/m produces

the maximum power output of 7.6 kW, which is perhaps useful for an

auxiliary power device, (Slocum, 2014). Damping coefficients less than

1.0 × 106 Ns/m have negligible effect on the equivalent fatigue stress

while damping coefficients greater than 3.0 × 107 Ns/m approach an

asymptotic limit that reduces the stress by 17%.

CONCLUSIONS

We derived a reduced-order model that computes the floating wind

turbine steady-state response to nonlinear viscous wave forcing and wind

damping, and lifetime equivalent fatigue stress due to tower bending in

the frequency domain. The results agree well with FAST steady state

results (Ramachandran, 2013). The most important advantage of this

nonlinear frequency domain approach is its computational efficiency.

Our nonlinear frequency domain approach computed each RAO in less

than 7.5 seconds when each RAO contained 500 frequency steps and

the calculation was performed using 32-bit Matlab. Obtaining the FAST

RAO’s required running the floating wind turbine system for 8,000

simulated seconds. For a typical FAST (simulated time):(processor

time) ratio of 10, the FAST simulation required 13 minutes runtime. The

nonlinear frequency approach is approximately 100 times more efficient

than FAST for the RAO computation. This approach may be especially
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Fig. 5 WEC power and tower base lifetime effective fatigue stress

for varied WEC effective damping coefficients, bWEC. The

WEC is submerged to zWEC = −70 m, and the system uses

the OC3-Hywind system (Jonkman, 2010).

useful for rapid design parameter optimization when nonlinear effects

are important.

Future work will include expanding the model to incorporate controls,

turbulent wind, additional degrees of freedom such as the rotor blades,

and misaligned incident wind and wave forcing. We will apply the model

to assessing the stress and auxiliary power of combined floating wind

turbine-wave energy converter designs.
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